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An algorithm is developed for 3D nonlinear, resistive, incompressible magneto- 
hydrodynamic calculations in a clindrical geometry. The nonreduced primitive MHD 
equations are used. The state variables are expanded in Fourier series in the poloidal and axial 
coordinates, while a finite difference scheme is used in the radial direction. Applications to 
m = 1 tearing mode calculations in tokamaks and the self-reversal of a reversed field pinch are 
presented. 

I. INTR~D~JCTI~N 

In magnetic fusion research, magnetohydrodynamic (MHD) equations have been 
used quite successfully in studying gross dynamics and macroscopic equilibrium and 
stability problems of fusion plasmas. Following the evolution of plasmas from an 
initial nonequilibrium to an equilibrium state necessitates the solution of nonlinear 
MHD equations as an initial-boundary value problem. Similarly, modification of a 
given equilibrium by possible idea1 or resistive instabilities can only be followed in 
time using a nonlinear initial value algorithm. Several multidimensional codes of 
various forms have been in use for quite some time now. Excellent reviews can be 
found in Brackbill ] 1 ] and Schnack 12 ]. 

In recent years, the emphasis in large-scale MHD computations has shifted to the 
use of Fourier transform techniques, since in general such codes tend to be more 
efficient and accurate, especially when only a relatively small number of modes are 
needed. Orszag has been a proponent of the use of spectra1 methods in fluid dynamics 
calculations for many years [3]. In magnetic fusion research where instabilities tend 
to nonlinearly develop singularities or large gradients in radial direction, using 
Fourier expansions in poloidal and toroidal coordinates and finite-difference methods 
in the radial direction has proved to be a more efficient method. Park et al. used this 
technique and the reduced MHD equations in the high-p ordering ]4] to study the 
second stability regime of ballooning modes 15, 61. A series of codes using similar 
methods and the reduced MHD equations has been developed at Oak Ridge National 
Laboratory and used to study the interaction of tearing modes in cylindrical and 
toroidal geometries [ 7-91. 

Reduced MHD equations are based on expansions in the inverse aspect ratio, ratio 
of the minor to major radius of a torus, and make use of certain ordering 
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assumptions about the relative strength of various physical quantities. In particular, 
in the low-/3 ordering [ 101, 

B& - O(E), and 

p/B; - WE’), 
(1) 

while the high-/? ordering assumes p/B: - O(E). B, and B, are the poloidal and 
toroidal field strengths, respectively. p is the plasma pressure and E, the small 
parameter used in the expansions, is the inverse aspect ratio. For many fusion devices 
other than tokamaks, these assumptions are not valid, and one is forced to abandon 
the reduced MHD equations. 

In this paper, we describe a new algorithm for solving the primitive, nonlinear, 
resistive MHD equations in three dimensions using a Fourier expansion method. In 
contrast to methods based on reduced MHD equations, the poloidal field is not 
assumed small relative to the toroidal field. However, the plasma motion is 
assumed incompressible; thus, the compressional modes are eliminated, and only 
the shear Alfven time scale remains. The resulting algorithm is very efficient, since 
much larger time steps are possible with the elimination of compressional waves. 

Besides the incompressibility of the flow field, no other assumptions are made, and 
the full set of nonlinear MHD equations are solved as an initial-boundary value 
problem in a cylindrical geometry. With periodic boundary conditions in the toroidal 
direction, the computational domain is topologicaly equivalent to a torus. All effects 
of toroidal curvature, however, are missing in our calculations, and a proper 
treatment of toroidal corrections is left for a future work. 

In Section 2, we review the standard set of incompressible MHD equations. 
Numerical methods, a mixture of Fourier transform and finite-difference techniques, 
are discussed in Section 3. Results from linear and nonlinear evolution of m = 1 mode 
in small and large aspect ratio tokamaks and the self-reversal of an RFP are given in 
Section 4. Section 5 summarizes the results described here. 

2. THE EQUATIONS 

The incompressible, resistive MHD equations are written in the following form: 

A8 
-=-V.uu+JxB-Vp, 
at 

l3B 
-=-VXE, at 

E=-uxB+(l/S)J, (4) 

J=VxB, (5) 

v.u=o, (6) 

V.B=O, (7) 
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where u, B, and E are velocity, magnetic and electric fields, respectively. J is the 
current density, and p is the scalar pressure field. There is no equation for time- 
advancing p; its instantaneous value is determined by the incompressibility condition 
V . u = 0, which serves as the equation of state. 

Variables have been normalized as follows: 

r --t t/a, B + WB,o, 

t + t/+ u -+ UIUhp 3 

P-+P/Po= 1, P+Pl& 

where a is the minor radius, and BOO is a characteristic poloidal field strength. The 
mass density p is assumed to be constant (unity), which is consistent with Eq. (6) and 
a uniform initial state. S is the ratio of the diffusion time t, = ,u,a*/r, to the poloidal 
Alfven time r,, = a/u,,, where uhp = Be,/(u,,pO)“‘, and q,, is a characteristic value for 
resistivity. 

Resistivity is not calculated self-consistently. In general it is an ad hoc function of 
space and time. In some tokamak applications, it is assumed to have the functional 
form 

VP) = E<,,,,/J&Y t = Oh 

which prevents decay of the axial current in the absence of unstable modes [ 11 I. 

3. NUMERICAL METHODS 

Equations (2)-(7) are solved by a combination of Fourier expansions in the 
azimuthal and toroidal directions, and finite-difference techniques in the radial 
direction. The truncated Fourier expansions provide an exact representation of the 
azimuthal and toroidal derivatives. As the numerical results of Section 4 demonstrate, 
the resulting method is highly accurate in resolving fine radial structures that develop 
during linear and nonlinear calculations when a tine radial grid is employed. 

The incompressible equation of state, Eq. (6), results in an implicit equation for the 
pressure field p. In addition, a restrictive condition on the time step associated with 
the resistive diffusion and the small radial grid spacing is avoided by implicitly 
differencing the diffusion terms in Eqs. (3) and (4). These implicit equations are 
easily inverted because of the decoupling afforded by Fourier expansions. 

We turn next to the description of coordinates and the Fourier expansions of the 
state variables. 

3.1. Coordinates and Fourier Expansions 

The coordinates for our cylindrical problem are (r, 0, 0, where r is the radius, Q is 
the azimuthal angle, and the angle [ is related to the usual cylindrical z by z = R,c. 
R, is the major radius of the torus. 
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All variables are expanded in double Fourier series in the periodic directions 0 and 
[. If the initial equilibrium is characterized by the fields 

B,,, = \‘ amn cogme + ni), 
m.n 

B,,) = \’ b,, cos(m9 + n<). 
m . II 

where usually only the m = 0, n = 0 coeffkients are nonzero, and if the parity of the 
perturbation is chosen accordingly, Eqs. (2t(7) generate only pure sine or cosine 
series. Sine series are required for B,, u,, and Us, whereas u,.. B,, B,. and p are 
expanded in cosine series: 

U,(r, 8, <) = \‘ iU,(r; WI) eic”‘s- ‘Ii). - 
m , II 

(8) 

U,.(r, 8, <) = \‘ U,.(t-: TWI) er’m’i b “1), 
m . II 

where 

ucp, 8, 0 = fu,p. 8, ~1, ~,(r, 8, r), B,(r, 4 0~. 6 i) I’. 

and 

U,(r; -rn, -n) = -U,y(r; m, n), U,.(r; -m, +I) = U,.(r; m, n), 

Because of odd/even parity of the coefficients, only half of them are calculated and 
stored. 

In previous calculations employing reduced MHD equations. convergence of the 
above representation has been demonstrated using a relatively small number of 
judiciously chosen modes 191. This rapid convergence is reproduced in the present 
model. Because of the small number of modes (-loo), the convolution sums resulting 
from the uu and J X B terms in Eq. (2) and the u X B term in Eq. (4) are evaluated 
directly. The summations are vectorized over the radial mesh points. resulting in an 
efftcient code. 

A result of the Fourier decomposition is the almost trivial linearization of the 
equations. The code can be run either in a linear mode, where only one Fourier coef- 
ficient is calculated, or in a nonlinear mode, where all coefficients are advanced in 
time simultaneously. 

We turn next to the temporal differencing of the equations resulting from these 
Fourier expansions. 
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3.2. Temporal Dlflerencing 

The variables are advanced in time by a first-order predictor-corrector scheme. 
Diffusion terms are treated implicitly in order to avoid stringent Courant conditions 
based on the radial mesh size: 

u* = u” + 6t(-V . U”U” + J” x B” - VP”), 

B*=B”+c%(Vxu”xB”-Vx(l/S)VxB*), 
u”+I =u”+6t(-V.u*u*+J*xB*-VP”+‘), 

B “+‘=B”+6t(Vxu*xB*-Vx(l/S)xB*). 

(9) 

(10) 

(11) 

(12) 

As stated earlier, there is no equation for time advancing the pressure field, p; 
Before Eq. (9) can be solved for u*, p* is determined by inverting the elliptic 
equation 

V2p* =A V . u” - V: u”u* + V . (J” x B”), (13) 

which is obtained by taking the divergence of Eq. (9) and letting V . u* = 0. This 
method, first used by Harlow [ 121, ensures that the velocity field at the new time step 
is divergence-free, even if u” is not. Because of the Fourier expansions (13) is a one- 
dimensional equation for the Fourier amplitudes p(r; mn). The resulting tridiagonal 
system is inverted using standard techniques [ 13 1. 

The implicit part of Eq. (10) results in a block tridiagonal system for B *. Inversion 
of this system and the simpler scalar system for the pressure are vectorized over the 
Fourier coefficients on Cray-1. This vectorization requires storing the relevant 
matrices for all the Fourier coefftcients during the inversions. The resulting increase 
in storage requirements is more than compensated by the decrease in CPU time. The 
description of the algorithm is completed by specifying the radial differencing and the 
boundary conditions. 

3.3. Radial Dijferencing 

Because of the Fourier decomposition in 8 and [ directions, a finite-difference mesh 
is used only in the radial direction. To eliminate decoupling of odd and even mesh 
points, variables are staggered on this mesh as follows: 

- u,(r; mn), B,(r; mn), E,(r; mn), E,(r; mn), Je(r; mn), and J&r; mn) are 
defined at cell boundaries (ri, i = 0, l,..., Z), and 

- u,(r; mn), u&r; mn), B,(r; mn), B&r; mn), E,(r; mn), J,(r; mn), and 
p(r, mn) are defined at cell centers (ri+ ,,2r i = -1, 0, l,..., Z). 

With this staggered mesh, the vector identity V . V X u = 0 is satisfied identically 
by the finite-difference equations if the divergence and curl operators are defined as 
follows: 
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' . ui+ l/2 = 
rit l”ri - riu, . 

ritl,2(r;y,-Tij +$-/R.tli:t~uilili~ 

vxui=i 

i 

im in 
-u --u 

'if 1/Z 
blili2 R pi.,,,? 

0 1 

tB Fur,- U51+1/2 

1. I 

- %-,,2 

1 1 

t 4 ~ri~,,2u*i+:,r~~',~2u~~~,,; 

i 

im ur,(, 

I I ri 

(14) 

(15) 

where hi = ri+ ,,2 - ri- ,,2. 
To ensure that the velocity field is exactly divergence-free, the Laplacian operator 

in Eq. (13) has to be defined in a way consistent with Eq. (14). In the predictor step 
this is accomplished by substituting u * from Eq. (9) into Eq. (14) and letting 
v * ui”, ,,2 = 0. The resulting finite-difference form of Eq. (13) is a set of tridiagonal 
systems for each of the Fourier harmonics, 

I -ajpfL,/2+ a tCi+ Ii 
L 

6 :J/ 
'i+ 112 

t+ P~+I:*-ciPix-3;2 

=- t V . (J x B);+ ,,* - V: (uu);, ,,‘2 1, (13’) 

where 

ai = 6r; ri+ ,,2;:i+, - ri) ’ 
and 

These equations have a solution p,?+ ,,2, which, when substituted into Eq. (9). 
guarantees that u* is solenoidal. The corrector step is treated in the same way. 

The curl operator of Eq. (15) is used in differencing the equations for the B field: 
thus, taking the divergence, as defined by Eq. (14), of Eqs. (10) and (12), we obtain 

and 
V.B*=V.B” 

V . B”+’ = V . B”, 

respectively. Therefore, the magnetic field remains solenoidal also if V . B = 0 
initially. 

3.4. Boundary Conditions 

Coordinate axis. The requirement that the physical variables u, B, p, etc., be 
single-valued at the origin imposes certain regularity conditions on them. 
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For any scalar p with the expansion 

p(r, 8, 0 = y p(~; mn) eifmo+ “I, 
m.n 

if ~(0, 0, I;) is to be single-valued, we need 

from which we obtain 

p(r = 0; mn) = 0 for m # 0. 

For any vector u, 

U(T, 8, <) = x u(r; mn) ei(mo+nS), 
m.n 

where u(r; mn) may be complex, 

leads to 

and 

u,(O;mn)= 0 for m #O, 

imu,(O:mn)- u,(O;mn)= 0, 

u,(O;mn)+ imu,(O,mn)= 0. 

(16) 

(17) 

(18) 

The homogeneous system (18) has nontrivial solutions only for 1 m / = 1. from 
which we obtain the following regularity conditions: 

u,(O;mn)+ imu,(O;mn)=O for Iml= 1, 

for Irnlf 1. 
(19) 

ur(O;mn)= 0 and u,(O;mn)=O 

The conditions for the symmetric tensor uu appearing in Eq. (2) are derived 
similarly. Letting T = uu, and using 

we obtain the following conditions, where we have used 

u,z+- x u,(r;m'n')u,(r;m"n"). (20) 
m’tm”=m 
n'+n"=fl 
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(i) Fn = 0: 
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u,u,=o 

U,UI = 0 

uNug = 0 

u,u, - UHUH = 0 
u,u,, U#U@’ and uCuC can be finite at r = 0. 

(ii) (ml = 1: 

u,.u, = 0 

UrUe = 0 

UHUH = 0 

u,q=o ., 

u,u( + imu, u( = 0 

u,u( and uBul can be finite. 

(iii) Irnl = 2: 

U,U( = 0 

UHUS = 0 

ucuc = 0 

2~~24, + imu,uo = 0 

2u,u, - irnu,u8 = 0 

u,u,, UeUe, and u,uu can be finite. 

(iv) For Irnl > 2, T=O at r=O. 

(21) 

(22) 

(23) 

Since these conditions should directly follow from those imposed on u itself, they are 
merely used as a first-order check on the convolution sums in Eq. (20). 

On our staggered mesh, which is extended to r < 0 as shown in Fig. 1, the 
conditions in Eqs. (16), (17), and (19) are implemented by odd/even reflection about 
r = 0 of those variables defined at the cell centers. 

FIG. I. The radial mesh is extended half a cell beyond the origin (r = 0) $nd the conducting wall 
(r= 1). 
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The outer boundary. The cylindrical wall is usually, but not necessarily, a flux 
surface with 

B,=O, 

u,=o. 
(24) 

The parallel components of u are determined by the free-slip conditions 

~.vx”=i^.vxu=o for all (m/n). 

Except for a possible symmetric axial field, the parallel components of E vanish at 
the wall: 

E,=O for all (m/n), and 
(25) 

E, = Elwa,, for (m/n) = (O/O); E, = 0 otherwise. 

Consistent with Eq. (25), the B field satisfies 

B.VxB=O for all (m/n), and 

&VxB=O for all (m/n), (m/n) # (O/O). 

For a constant voltage boundary condition, we let 

r^ . V x B - Eiwa,, 
v 

for (m/n) = (O/O), 
wall 

whereas in the constant current case, 

B 0W8,, = B,(r,+ ,,2 ; O/O) = constant. 

Note that in the first case, ESWa,, is a prescribed function of time, but in the latter, it 
is implicitly determined by the condition on B,. 

The pressure field satisfies the Neumann condition 

dP $=‘. (-V.uu+JXB), (26) 

which is consistent with the vanishing of U, at the wall. 

3.5. Numerical Stability 

Linearizing Eqs. (2E(7) about a uniform state and Fourier analyzing the resulting 
equations, we obtain 

au 
- = i(k . B,) B, at 

at = i(k . B,) u, 
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where B, is the equilibrium field. For these equations, the predictor-corrector scheme 
of Eqs. (9)-(12) is linearly stable if 

6t/k.B,) < 1. (27) 

Because the fluid is incompressible, maximum step-size is independent of the radial 
mesh size Jr. The maximum stable time step of a corresponding compressible 
calculation is determined by the compressional Alfven time, which, in our units, 
would give the Courant condition 

6t IkJ JB,l < 1. 

Near the origin, this condition implies 

&MB, 
-< 1, 

Jr 

where M is the largest poloidal mode number used in the calculations. Since Eq. (27) 
implies 6tincomp - l/M, in general we have 

dtincomp ’ 

6t Tr’ camp 

and the saving in computer time is substantial for a typical mesh size of 6r < 10 I. 
Note that the stability condition of Eq. (27) does not involve resistivity either, 

since the resistive part of the induction equation is treated implicitly. 
Linear numerical stability does not guarantee the stability of the code in highly 

nonlinear calculations, where we are sometimes forced to use a time step smaller than 
allowed by Eq. (27). We have devised the following ad hoc scheme which keeps 6t 
near an optimum level throughout a calculation. 

One of the earliest symptoms of a developing numerical instability in our code is 
that the Fourier coefficients exhibit temporal, as well as spatial, oscillations. In 
particular, B,.(r, t; m/n), where (m/n). is that mode for which 1 k . B,I is maximum, 
shows the following temporal behavior: 

B,.(r*, t; m/n) - u(t) sin z, 
5 

r* = (r,, or r,- ,). (28) 

As the instability develops, the period r becomes shorter, while the amplitude u(t) 
grows. Thus, to be able to detect an instability before it becomes harmful, we 
continuously monitor B,(r*, t; m/n), and reduce 6t when r drops below c, 6t. 
Similarly 6t is increased when r > c, at, where the parameters ci and c, are usually 
set to 3 and 12, respectively. This algorithm keeps the code running with a time step 
just below the instability level and has proved to be superior to others we have tested. 
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4. SAMPLE CALCULATIONS 

4.1. m = 1 Resistive Tearing Mode 

In the cylindrical approximation, tokamak plasmas become unstable to an m = 1 
mode whenever the safety factor drops below one on the axis. In the ideal MHD, 
limit, the mode saturates at a moderate amplitude after the plasma reaches a helical 
equilibrium with a singular current sheet at the q = 1 rational surface [ 14, 151. In the 
presence of resistivity, this current singularity is resolved by tearing and reconnection 
of the field lines, which leads to the formation of a large m = 1 island. In 
Kadomtsev’s heuristic analysis of the reconnection process [ 161, this island even- 
tually squeezes out the original magnetic axis, flattening the current profile and 
raising q on axis to unity. Calculations of Waddell et al. essentially confirmed 
Kadomtsev’s analysis [ 111. These calculations were done in the large aspect ratio 
limit, where the ideal mode is neutral. Using an aspect ratio of 100 (F = 10m2), we 
reproduce their results, although with E = l/3, our results are qualitatively different. 

(a) Equilibrium and linear calculations. The equilibrium current density is given 
by Ill1 

Jc”(r) = [ 1 + ($.J ,2 ’ (29) 

where rc,, is the current channel width normalized to minor radius. With J, = 2.22, 
and rc,, = 0.6, we have q,, = 0.9, qw,,, = 3.4, and rs, the radius of the q = 1 surface, is 
at 0.2. 

The resistivity profile is determined by 

S(r) = s, J&> 
Js,k) ’ 

(30) 

where S, = 5.0 x 104. 
With this equilibrium, the linear growth rate of the m = 1 mode as a function of 

the aspect ratio is shown in Table I. 

TABLE I 

Linear Growth Rate of the m = 1 Mode as a Function 
of the Inverse Aspect Ratio, for S = 5.0 X lo4 

c Yom 
-__~~ 

1 7.64 x lo- * 

l/3 3.22 x lo- I 

l/IO 2.02 x 10 2 

l/50 1.88 x 1O-2 

l/100 1.87 x 10 * 

l/1000 1.87 x 10 -* 
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TABLE II 

Linear Growth Rate of the m = 1 Mode as a Function of S, for E = 10 2 

S 
~-~.. _____. 

5.0 x lo4 

Ynum 

1.87 x IO-* 

Y,h 
.____.____. 

2.71 x 10 ’ 

Percentage 
difference 

45 

8.1 x IO” 9.46 x 10-j 1.07 x 10~ j 13 

8.1 x 10” 4.69 x IO ~3 4.99 x 10 1 6 

1.0 x 10” 2.12 x 10-l 2.15 x 10 ’ 1 

Linear theory, which is valid only in the large aspect ratio and large S limit, 
predicts for the same parameters a growth rate of 2.71 X IO-*. As expected. the 
difference between theoretical and numerical growth rates becomes less as S is 
increases, as shown in Table II. 

For the run with S = 108, for which the perturbed current density is shown in 
Fig. 2, the grid spacing was 2.5 X 10e4 near the singular layer. 

(b) Nonlinear calculations. Nonlinear evolution of the mode is investigated for 
two different aspect ratios using 20 Fourier harmonics. For E = 10e2, we reproduce 
the results of Waddell et al. [ 111, as shown in Figs. 3 and 4, but for E = l/3, our 
results are qualitatively and quantitatively different. In this case, the vortex structure 
characteristic of the flow field for an m = 1 mode goes through many reversals in 
sign during the evolution of the mode. In Figs. 5 and 6, the velocity field and the 
helical flux contours are shown at different times for this nonlinear run. At t = 290, 
we observe the usual m = 1 island, and the counter-rotating vortices carrying the 
magnetic axis towards the x-point. Figures 5b, c, and d show the various stages of the 
first reversal. First, two more vortices in opposite directions to the first two appear. 
They later dominate and convect the plasma away from the zpoint, towards the 
center of the column. During this inverse reconnection (Fig. 6d), a new magnetic axis 
forms; tearing and reconnection at the x-point contribute to the formation of flux 
surfaces around this new axis, in contrast to the original convection process that fed 
flux into the m = 1 island from the magnetic axis. By t = 450, the convection pattern 
resumes its initial direction. This reversal is repeated a few more times before the 
direction of the flow pattern becomes steady. However, the mode seems to saturate 
without total reconnection, as the island is still visible at t = 1.23 x IO3 (Fig. he). A 

plot of the kinetic energy for this run is shown in Fig. 7. The final level is charac- 
teristic of a steady flow associated with the saturated state. 

4.2. Self-Reversal in a Reversed Field Pinch 

A reversed field pinch (RFP) is a device that carries a toroidal current and an 
externally induced toroidal field [ 171. It differs from a tokamak mainly in that the 
toroidal and poloidal fields are of comparable magnitude, and the safety fatter q is 

581/53/l-8 



112 AYDEMIR AND BARNES 
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(a) 

-0.5 0 0.5 I .o 
r 

4 

(b) / 4 

0.18 0.19 20 0.21 0.2 

r 
!2 

FIG. 2. (a) Perturbed toroidal current density for the m = 1 mode from a linear calculation with 
E = lo-* and S = IO*. (b) Tearing layer, where a plus sign (+) has been plotted at the value of J, at 
each mesh point. 
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FIG. 3. Toroidal current density at various times during the nonlinear evolution of the VI = I mode 
in a tokamak with F = 10 *. S = 5 X IO4 at the 9 = 1 surface. (a) I = 486. (b)! = 586. 
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FIG. 3 (continued). (c) t = 636, (d) t = 956. 
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(a) t:486 

FIG. 4. Helical flux contours for the run of Fig. 3. The outermost flux surface shown is at r = 0.25. 

less than unity everywhere in the plasma. Ideal MHD stability is maintained by a 
combination of high magnetic shear and a close-fitting conducting wall. 

When the pinch parameter t9 = B,w,,,(B,), is large enough, where (B& is the 
volume-averaged toroidal field, such devices, after going through an unstable phase, 
exhibit a quiescent state in which the toroidal field is reversed near the wall [ 181. We 
are currently studying this self-reversal phenomenon and briefly discuss some 
preliminary results here. 

The calculations start from an initial equilibrium in which the plasma has been 
compressed away from the wall by the toroidal current. The current and q-profile for 
the zero-/3 equilibrium we’ will discuss are shown in Fig. 8. Initial value of the pinch 
parameter is 1.98, and S = 5 x 103, constant in space and time. 

The most unstable modes for this equilibrium are m/n = l/2 (m = 1, k, = 2), and 
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.’ ;  

(a) 

: : : :,, 
‘) 

: ., :, :, 
: ,, ., ‘, t=290 (b) t=350 

Cd) t=390 

FIG. 5. Poloidal flow at various times during the nonlinear evolution of the m = 1 mode in a 
tokamak with E = l/3. S = 5 x 10’ at the q = 1 surface. Only r < 0.25 part of the plane is shown. 
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\ 
(bl 

FIG. 6. Helical flux contours for the run of Fig. 5. The outermost flux surface is at r = 0.25. 
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‘“ioo 

L.,.,,‘,.I,. ,,rn ,,!J 

700 1200 

-hp 

FIG. 7. Kinetic energy history for the run of Fig. 5. 

l/3 (m = 1, and k, = 3), for which the growth rates are 9.42 x 10-l and 
2.70 X lo-‘, respectively. Instead of including in the calculations all modes (m/n), 

-M < m  < M, 0 < n <N, where M, N are some cutoff mode numbers, modes are 
selected on the basis of a mode pyramid generated by the nonlinear interaction of 
m/n = l/2, and l/3 [9]. Typically about 60 modes are used in our calculations. 

Kinetic energy history from a typical run is shown in Fig. 9. Initial exponential 
growth and subsequent oscillations are mainly due to the (l/2) mode. Since the 
q = l/2 surface is not present in the plasma initially, and B, = 0 on the wall, this 
mode saturates without any reconnection. The oscillatory behavior is caused by its 
initial overshoot and lack of adequate viscous damping. 

Sudden increase in the kinetic energy around t = 120 is accompanied by a 
pronounced reversal of the axial field on the wall (Fig. 10). With no applied electric 
field at the boundary, the axial current decays, and reversal is lost by t-300. A plot of 
F vs 8, where F = Biw/(B,),, is shown in Fig. 11. 

Even after approximately lo4 time steps, magnetic and velocity fields are 
divergence-free, as shown in Fig. 12, where we plot the time histories of the quantities 

and 

(32) 
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FIG. 8. (a) Toroidal current density for the zero-/? equilibrium used in the RFP self-reversal 
calculations. (b) Initial 4 profile for the RFP calculation. 
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FIG. 9. Kinetic energy history for the RFP self-reversal calculation. 
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FIG. 10. Value of the axial field on the wall for the RFP self-reversal calculation 
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J 

FIG. 11. F - 0 diagram for the RFP calculation. 

Note that since we set V - u”+’ = 0 at each time step, )I V . uIJ differs from zero 
only because of the roundoff and truncation errors that occur during that particular 
step, whereas the errors in V . B accumulate over time, since the magnetic field only 
satisfies V 1 B”” = V . B”. However, (IV . B)I is still insignificant, even at the end of 
the run. 

5. SUMMARY 

A 3D initial value code that solves the nonlinear, resistive, incompressible 
magnetohydrodynamic equations in a cylindrical geometry has been developed. The 
equations are used in their nonreduced, primitive forms, thus making the code 
applicable to a variety of cases with finite p and aspect ratio. The numerical methods 
employed guarantee that both the velocity and the magnetic fields are exactly 
divergence-free. Incompressibility assumption and the implicit treatment of the 
diffusion terms eliminate restrictive stability conditions based on radial mesh size, 
and along with the use of Fourier expansions in the two periodic coordinates, produce 
an accurate and efficient code. 

Preliminary simulation results have been obtained for both tokamak and RFP 
configurations. For a very large aspect ratio tokamak, results for the m = 1 tearing 
mode reproduce theoretically predicted growth rates in the limit of large S. The 
nonlinear evolution of this mode in the large aspect ratio limit agrees with previous 
calculations based on reduced MHD equations. For small aspect ratio devices, the 
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FIG. 12. (a) Time history of /IV . u/j, as defined by Eq. (31), for the RFP calculation. (b) IIV BII 
history. 
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linear growth rate becomes much larger, approaching that of the ideal mode and the 
nonlinear evolution is very different. Reconnection of the field lines inside the 
singular surface and the disappearance of the original magnetic axis is followed by an 
inverse reconnection process. A new m = 1 island is generated, and the mode 
saturates, leaving the plasma with a helical deformation. 

The simulation of an initially nonreversed screw pinch at moderate compression 
shows a self-reversal of the axial field at the wall associated with a strong m/n = l/3 
instability. The resulting motion in the F, 6’ plane shows rapid relaxation toward a 
reversed field state, followed by a gradual relaxation due to resistive diffusion. 
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